Localized hypermutation and associated gene losses in legume chloroplast genomes.

نویسندگان

  • Alan M Magee
  • Sue Aspinall
  • Danny W Rice
  • Brian P Cusack
  • Marie Sémon
  • Antoinette S Perry
  • Sasa Stefanović
  • Dan Milbourne
  • Susanne Barth
  • Jeffrey D Palmer
  • John C Gray
  • Tony A Kavanagh
  • Kenneth H Wolfe
چکیده

Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus.

Astragalus membranaceus is an important medicinal plant in Asia. Several of its varieties have been used interchangeably as raw materials for commercial production. High resolution genetic markers are in urgent need to distinguish these varieties. Here, we sequenced and analyzed the chloroplast genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao using the next generatio...

متن کامل

The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus

The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of...

متن کامل

Loss of Chloroplast trnLUAA Intron in Two Species of Hedysarum (Fabaceae): Evolutionary Implications

Previous studies have indicated that in all land plants examined to date, the chloroplast gene trnLUAA isinterrupted by a single group I intron ranging from 250 to over 1400 bp. The parasitic Epifagus virginiana haslost, however, the entire gene. We report that the intron is missing from the chloroplast genome of twoarctic species of the legume genus Hedysarum (H. alpinum, H. ...

متن کامل

The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene

Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome ...

متن کامل

A novel inversion in the chloroplast genome of marama (Tylosema esculentum)

Tylosema esculentum (marama bean) is being developed as a possible crop for resource-poor farmers in arid regions of Southern Africa. As part of the molecular characterization of this species, the chloroplast genome has been assembled from next-generation sequencing using both Illumina and Pac-Bio data. The genome is of typical organization with a large single-copy region and a small single-cop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 2010